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INFLUENCE OF A HYDRODYNAMIC FIELD ON LAMINAR FLAME STABILITY

G. 1. Sivashinskii

Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, Vol. 8, No. 6, pp. 14-19, 1967

The hydrodynamic stability of a plane flame front has been studied
by L. D, Landau in [1], where it was shown that it is absolutely un-
stable.

The aim of this note is to clarify the influence of the hydrodynamic
field curvature on flame stability. Flame stability is analyzed within
the framework of Landau's theory, in which the flame front is repre~
sented by a swface on which the velocity, density, and temperature
values experience discontinuities, Viscosity, diffusion, and heat con-
duction are neglected. The front moves at a given constant velocity
relative to the gas. The gas is assumed to be incompressible in front
of and behind the front.

It is shown that fields exist which will both stabilize and destabilize
the gas. A cylindrical flame formed by a concentrated source of given
intensity Is examined (two-dimensional problem). Flame stability is
studied for the case of a perturbed flame front, It is shown that in this
case, the hydrodynamic field has the effect of stabilizing the flame.
For the first perturbation harmonics, the destabilizing effect of gas
expansion appears to be relatively weak compared to the stabilizing
effect of the velocity field. The first perturbation harmonics atten-
uate, The destabilizing effect of the velocity field is demonstrated
by an example in which the radial flow of the fresh mixture is ap-
plied externally, and there exists a concentrated sink flow for the
combustion products,

§1. The hydrodynamic pattern of an unperturbed
cylindrical flame, in the polar coordinates r and ¢ has
the form
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where vy is the radial velocity component of the gas,
S is the flame velocity relative to the gas, p is the
gas density, P is the pressure in the gas, Q is the
intensity of the fresh-mixture source, and R is the
radius of the unperturbed flame front (all the fresh-
mixture parameters are denoted by subscript 1,
while subscript 2 denotes the combustion-product
parameters).

The stability analysis will be based on the equation
for the stream function ¥
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The Euler equation provides a relation between ¥
and P;
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We set ¥ = ¥° + ¢, P =P°+p (where ¥°, P° cor-
respond to the unperturbed flame), and assume that

o< ¥, o] <P} (1.4)
Using (1.1), (1.4), we linearized Egs. (1.2)and (1.3)
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From (1.5), we have
Ap=F (t — 1/ 2%, ¢, (1.7}
which for the initial time is
Apy=F (t—r?/2u, ¢ =0. (1.8)

Assuming that the fresh-mixture source is not a
vortex source, and taking (1.8) into account, we find
thatAd = Ofor t = 0, 0 =r =<Randr = (2xt + R)/2 =
= D(t). Hence, in linear approximation, the flow will
be potential only beyond the ring R =r =< D(1).

Thus, a perturbation leads to the separation of a
vortex discontinuity surface from the flame front.
Since the velocity of this surface relative to the gas is
zero, the tangential velocity component can have a
discontinuity w(¢, t) at r = D(t). Since at the initial
time, only the front is perturbed, we set

w(p, 0) = 0.

32. We write the linearized conditions for mass-
flow and momentum-component conservation at the
flame front, together with the conditions for the con-
stancy of the flame front velocity relative to the gas.
For r = R, we have:

mass flow continuity

(1.9)

S101 =25 Pz (2.1)
normal momentum component continuity
Pr—pa=ARB oy (y — ) ([A] <R).; (2.2)
tangential momentum component continuity
d 1 A
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and constancy of the normal froat velocity relative
to the gas
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Here A is the perturbation of the front.



8 ZHURNAL PRIKLADNOI MEKHANIKI I TEKHNICHESKOI FIZIKI

The linearized conservation conditions on the vortex
discontinuity surface and the impenetrability condi-
tions of the surface for the gas, at r = D(t), are:

continuity of the normal momentum component

P —ps =0, (2.5)
impenetrability of the vortex discontinuity surface
g
£ (o — P3) = 0

and possibility of a discontinuity of the tangential
velocity component

(2.8)

2 (a— ) = 0 (@1) (2.7)
(the combustion product parameters in the region r =
z D are denoted by the subscript 3.)

$3. Let us show that the radial field of a concen-
trated source has a stabilizing effect on the flame
front. To this end, we assume that thermal expansion
is absent, i.e., py =p2 =p; 81 =83 = 8. Under these
conditions, a perturbation of the flame front will not
lead to a disturbance of the velocity and the pressure.

From the first equation in (2.4), we have a pertur-
bation equation for the front

A
Gt A=0. (3.1)

From here, it is seen that the flame front is ab-
solutely stable.

We shall show that the hydrodynamic field of a con-
centrated sink flow has a destabilizing effect on the
front. Indeed, assuming p; =py =p, S; =83 =8, in the
same manner as above, we get

oA

®

Thus, in this case, the flame front is absolutely
unstable. If, however, p; > py—where p; is the com~
bustion-product density—the destabilizing effect of
thermal expansion will add up with the destabilizing
effect of the radial velocity field of the undisturbed
flame, thereby increasing the instability -of the front.

84, We expand the functions ¥, p, A, w, and F into
a Fourier series in ¢. The conditions (2.2)—(2.7) re-
duce to the conditions for the Fourier components
(the subscript k denotes the k-th Fourier component)
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Equations (1.6) and (1.7) reduce to the equations
for the Fourier components
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Making use of (4.1.2), (4.1.4), and (4¢.2.1)~(4.2.3),
we transform condition (4.1.1) to

Fe
575 (Prbux — P2¥mr) = E%I—F,, (t ———2[%) (4.3)

In the same manner, condition (4.1.5) converts to

11 Fy (t — P:.) = Dp, %%,
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Here, however, Fi(t — D%/2x,) = Fi(-R%/2n%,) = 0
by virtue of (1.8).
Hence, (4.1.5) is equivalent to

From here, according to (1.9), we have wi = 0.
Thus, the initial condition (1.9) ensures the continuity
of the tangential velocity component at the surface r =
= D(t). Condition (4.1.7) takes the form

a
- (b2x — Psi) = 0. (4.5)

Now (4.1.5) is a corollary of (4.5) and, therefore,
for r = D(t), it is sufficient to demand that only (4.1.6)
and (4.5) be satisfied.

§5, The case k = 0, which corresponds to one-di-
mensional perturbations of the front, leads to equa-
tion (3.1). This means that for k = 0, the front is
stable.

For k=1, 2, ... it is convenient to pass to dimen~-
sionless variables with the aid of the following formulas:

r—R4+RE/k, t=Rt/Sk,
P2 = £p1, A, = RO ()/k,
Yy = RS0 (1, 8) / |,
RF,= S kB (v—&—E*/2k)

Conditions (4.1.1)—(4.1.4), (4.1.6), and (4.5) take
the form
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Using dimensionless variables, from (4.2.2)~(4.2.4)
we get

op = Cy (v) (1 4+ &/ k), (5.2)
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(cont'd)

ag = Cy(v) (1 + E/ Ry,

Here, the condition [¢;] < < for r =0, 3 — 0 for
r — « ig taken into account.

From equations (b.1) and (5.2), one obtains a sys-
tem of equations for & and @

ad + b9 +0=0, 20"+ %=
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Let us examine the case k — =, where (1 + 2(7 —
— 2/l (/K gz

If here @ — =, so that Q/k < =, we arrive at the
stability problem for a plane flame front, investigated
by L. D. Landau [1] by the method of wave equations.

For k ~ «, system (5.3) can be reduced to a single
equation for 4

(A + &) 8" + 260 +e(e—1) &=0.

We set ¢(0) =4, then from (5.3.2) we have 4 '(0) =
= 3¢l — £)/2. It follows that the plane flame front
is absolutely unstable.

The solution of the equation obtained coincides as-
ymptotically with Landau's solution [1].

§6, For further analysis, it is convenient to trans~
form system (5.3) to

O = — QS—C—exp ~abr -—--i—S 0 (z) exp:ﬂzi—ydz (6.1)
b
6= Aezg 6(z) G (v—z)dz +
0
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We note that
2b — ac = (kky — 1)/ e kky >0 for k>1.

In the following we consider $; = 0, without loss of
generality.

We prove that ' = 0 for k > kg (¢ < 0). To this end,
as can be seen from (6.1), it is sufficient to demon~
strate that 6 = 0. Let us examine a set of functions
{u(n}, such that -QeYT =u(7) = 0 (R, are positive
constants), We show that for sufficiently large Q and

v, the operator A maps this set of functions into itself.

To this end it is sufficient to show that

T

Qev~ (S G(Z)e-«{zdz_i)—_'&ol)(zb——ac) .
0

22+ ™

This inequality holds a fortiori for sufficiently large
Q and y. Thus, —Qe¥Y7 = Au = 0 when ~Qe¥T=u = 0.
From here, according to the Leray-Schauder theorem
[2], there exists a 6(7) = 0 such that A6 =6.

In the same manner, one can prove that ' = 0 for
k <kg (¢ >0). In this case, 6 must be sought among
a set of functions {u(7)}, such that

0<Cu (1)< R (2 = const).

In order that the operator A maps this set into it~
self, it is sufficient to satisfy the inequality

T
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0

tor (20 ~- ac)

2(2+a) <0,

which is the case at sufficiently large Q, since

e St

On the bagis of the aforesaid and (5.3.2), it follows
directly that ¢ = 0 for k < kq.

§7. We show that ¢ — o for 7 — %, k >kq and that
& — 0 for 7 — e, and k < k;. Since 4' = 0 for k < k,
and ¢ = 0, and §' = 0 for k < kg, to prove the asser-
tion formulated, it is sufficient to show that ¢ I
for 7>, k k(0 <0< wx),

We solve the problem with the aid of the real Laplace
transform [3]

LY = S e~ (v) dv = [ (5).

If $ — 6 for 7— %, it is obvious that

b/s<<7 (9
0<7 (9

for &k <ky s >0 and

for &k >4, s >0. (7.1)

From (5.3) it is easy to obtain an expression for
f(s)

B acsh4-2(a+b)h +4

T = 2 Tasthf-bsnF 28 ¢ ' (7.2)
where
his) = e (14 55 e
0
Let s — +0, then
his) ~1/ Vs, — In s 1, (7.3)

for k =1, 2, n (n > 2), respectively.
For s — +0, from (7.2) and (7.3), we have
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for k =1, 2, n (n > 2), respectively.
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From here it follows that the conditions (7.1) are 2. L. A. Lyusternik and V. L. Sobolev, Elements
not satisfied already in the proximity of s = 0. Hence, of Functional Analysis [in Russian], Izd-vo Nauka,
& — for k >kg, and ¢ — 0 for k <k,. 1965.
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